Transfer to Organometallic Chemistry of Substituent Constants from Organic Chemistry. 1. Resolution of Longstanding Anomalies in the Chemistry of Organocobalt B_{12} Models and Organocobalamins

Luigi G. Marzilli, ${ }^{\dagger}{ }^{\dagger}$ Fernando Bayo, ${ }^{\dagger}$ Michael F. Summers, ${ }^{\dagger}$ L. Brannon Thomas, ${ }^{\dagger}$ Ennio Zangrando, ${ }^{\ddagger}$ Nevenka Bresciani-Pahor, ${ }^{\ddagger}$ Marina Mari, ${ }^{\ddagger}$ and Lucio Randaccio ${ }^{\ddagger \ddagger}$
Contribution from the Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Dipartimento di Scienze Chimiche, Universita di Trieste, 34127 Trieste, Italy. Received November 25, 1986

Abstract

Previous difficulties in rationalizing the relative trans effect and trans influence of alkyl groups in organocobalt complexes, including organocobalt B_{12} species (i.e. organocobalamins), are resolved by using a modified dual-substituent-parameter (DSP) approach. In contrast to some previous studies, in which the entire alkyl axial ligand (R) was treated as the substituent, the new approach involves treating R groups with a methylene group bound to Co as a $\mathrm{CH}_{2} \mathrm{Y}$ species, where Y is the substituent. This approach is tested in depth in cobaloxime compounds of the type $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{Y}$ (where $\mathrm{DH}=$ monoanion of dimethylglyoxime). It was found that when $\mathrm{L}=4$-cyanopyridine ($4-\mathrm{CNpy}$) and $\mathrm{Y}=\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{CF}_{3}, \mathrm{I}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{Br}, \mathrm{COMe}$, $\mathrm{Cl}, \mathrm{H}, \mathrm{SiMe}_{3}, \mathrm{Ph}, \mathrm{Me}$, and OM , the $4-\mathrm{CNpy}$ dissociation rate increased by a factor of more than 10^{6} and that the \log of the first-order rate constant could be linearly correlated with the equation $\log k=\rho_{1} \sigma_{1}+\rho_{\mathrm{R}} \sigma_{\mathrm{R}}{ }^{+}$in which σ_{1} and $\sigma_{\mathrm{R}}{ }^{+}$are organic-inductive and resonance-substituent constants and ρ_{1} and ρ_{R} are the respective coefficients. With use of σ_{1} and $\sigma_{\mathrm{R}}{ }^{+}$ $=0$ for $\mathrm{Y}=\mathrm{Me}$ (i.e. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Me}$), the linear correlation coefficient (lcc) was 0.9963 for 13 points and the goodness of fit (f) was excellent (0.093). A similar study with $\mathrm{L}=$ anisidine (without $\mathrm{Y}=\mathrm{NO}_{2}$) gave even better results (lcc $=0.9978$ and $f=0.073$). In contrast, the use of the substituent constant σ^{*} for the entire R group gave no clear relationship, especially for $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}$. Thus, previous usage of σ^{*} for quantitative analysis of data for organocobalt systems is questioned. Likewise, the modified DSP approach works well for ${ }^{13} \mathrm{C}$ NMR shifts when the resonance parameter employed is $\sigma_{\mathrm{R}}{ }^{0}$. These findings can be explained by invoking $n \rightarrow \sigma$ conjugation involving nonbonded electron pairs on the alkyl group and the polarizable $\mathrm{Co}-\mathrm{C}$ bond. Since $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}$ is a key alkyl group in our analysis and since no structural data are available to assess the structural trans influence of $\mathrm{CH}_{2} \mathrm{OMe}$, several structural studies of $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ compounds were performed. Structural results for three compounds, (1) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Me}$, (2) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}$, and (3) $\mathrm{R}=i-\mathrm{Pr}$, are reported. Crystallographic details follow: (1) $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{CoN}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, P 2_{1 / n}, a=10.998$ (1) $\AA, b=8.417$ (2) $\AA, c=21.859$ (2) $\AA, \beta=96.81$ (1) ${ }^{\circ}$. $D_{\text {calcd }}=1.42$ $\mathrm{g} \mathrm{cm}{ }^{-3}, \boldsymbol{Z}=4, R=0.042$ for 3006 independent reflections. (2) $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{CoN}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}, P 2_{1 / c}, a=8.351$ (3) $\AA, b=27.038$ (8) $\AA, c=9.893$ (2) $\AA, \beta=107.37$ (2) ${ }^{\circ}, D_{\text {calcd }}=1.39 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, R=0.046$ for 2909 independent reflections. (3) $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{CoN}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, P 2_{1 / c}, a=8.335(1) \AA, b=27.046(5) \AA, c=9.829(1) \AA, \beta=106.71(2)^{\circ}, D_{\text {calcd }}=1.39 \mathrm{~g} \mathrm{~cm}^{-3}, Z$ $=4, R=0.043$ for 3523 independent reflections. The structure of 2 reveals a trans influence for $\mathrm{CH}_{2} \mathrm{OMe}$ between that of $\mathrm{CH}_{2} \mathrm{Me}$ and $i-\mathrm{Pr}$ and no unusual steric effect of $\mathrm{CH}_{2} \mathrm{OMe}$ to account for its large trans effect or trans influence. Therefore, we conclude that the high position of $\mathrm{CH}_{2} \mathrm{OMe}$ in the trans effect/influence series is electronic and not steric in nature. Previous treatment of substituent effects of R groups demonstrates that the effects are additive and suggests that the DSP approach may eventually be extended to organocobalt systems with alkyl groups of the types $C H Y_{1} Y_{2}$ and $\mathrm{CY}_{1} \mathrm{Y}_{2} \mathrm{Y}_{3}$. Since previous analyses demonstrate that the effects of ligands on metal properties found in cobalt chemistry are parallel to those found with many other metal centers, it is possible that organic substituent constants may find broad applicability to organometallic compounds. Another extension of the approach, which seems feasible, is the use of organocobalt compounds to obtain values for $\sigma_{1}, \sigma_{\mathrm{R}}{ }^{+}$, and $\sigma_{R}{ }^{0}$ for substituents unknown in organic chemistry. Finally, the dependence of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra of organocobalamins on R is similar to that of simple organocobalt species, and although the current data base is inadequate for a thorough analysis, the modified DSP approach appears applicable to organocobalamins.

The intimate relationship between structure and electron donor ability of alkyl groups in organocobalt species, combined with the clear relationship between structure and $\mathrm{Co}-\mathrm{C}$ bond homolysis for alkyl B_{12} (cobalamin) systems, has led to many investigations of the influence of alkyl group substituents on the properties of the cobalt center. ${ }^{1-9}$ Such investigations have significance in two areas. First, conformational changes in 5^{\prime}-deoxyadenosyl cobalamin (coenzyme B_{12}) in the B_{12} holoenzymes are strongly implicated as essential features of the key step in initiation of the enzymic catalytic process, namely $\mathrm{Co}-\mathrm{C}$ bond homolysis. ${ }^{1.6-9}$ Second, the great importance of organometallic species in catalytic processes, both homogeneous and heterogeneous, calls for a detailed knowledge of the dependence of the properties of such compounds on the nature of the alkyl ligands. ${ }^{10}$ In this respect, transferability of organic substituent constants directly to organometallic systems would have great utility. Indeed, there is extensive evidence that the effects of ligands on the properties of metal centers in diverse types of compounds are often similar. In particular, cobalt compound based ligand-substituent constants

[^0]proposed by one of us about a decade ago ${ }^{11}$ are clearly representative of the effects of ligands on properties of many metal complexes. ${ }^{12}$ These properties include NMR chemical shifts and coupling constants and metal-ligand vibrational frequencies.

[^1]Nevertheless, there have been relatively few studies directed at either truly understanding the ligand effects or relating these effects to well-defined concepts such as electronegativity or organic substituent constants. The utilization of the latter type of information would, at the very least, allow the transfer to organometallic compounds of the parameters developed by physical organic chemists. ${ }^{13-18}$

Selected examples of problems that have escaped resolution deserve mention. First, on the basis of electronegativity, one expects that the order of electron donation by $\mathrm{CH}_{2} \mathrm{X}$ groups should follow the order $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F} .{ }^{19}$ The opposite order is found from the trans-labilizing effect of $\mathrm{CH}_{2} \mathrm{X}$, when information from several studies is combined. ${ }^{1}$ There is no satisfactory explanation for this order. ${ }^{19}$ Second, correlation of formation constants and ligand dissociation rates with σ^{*} (the polar substituent constant) ${ }^{13}$ led to some rough trends, but several anomalies and curvature in plots of linear free energy relationships (LFER's) were noted. ${ }^{16,17}$ These studies involved the extensively investigated B_{12} model systems, known trivially as cobaloximes (molecules of the type $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{R}$ where $\mathrm{L}=$ neutral ligand, $\mathrm{DH}=$ monoanion of dimethylglyoxime, and $\mathrm{R}=$ alkyl group). However, there is clear evidence that the relative effect of R variation on the property of organocobalt centers is minimally dependent on the nature of the equatorial ligand (chel) in model compounds of the type $\mathrm{LCo}($ chel $) \mathrm{R}$. Indeed, this conclusion also applies to organocobalamins. ${ }^{2-4,20}$

The investigation described here was prompted by a recent report by Espenson ${ }^{5}$ that $\mathrm{CH}_{2} \mathrm{OMe}$ and i - Pr , alkyl groups with very different σ^{*} values, have essentially the same trans effect. We have confirmed this similarity of trans effects, have established that these alkyl groups also have similar trans influences, and have developed a modified dual-subtituent-parameter approach that resolves the a nomalies mentioned above and provides insight into the bonding in such compounds. We believe this new approach may have broad application in organometallic chemistry.

Experimental Section

Reagents. All reagents were from Aldrich except for neopentyl iodide (Fluka) and isobutyl iodide and anisidine (Kodak). Before use in the kinetic studies, trimethyl phosphite and tributylphosphine were distilled under vacuum and I-methylimidazole was crystallized three times from its melt. All other materials were reagent grade and were used without further purification, including the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ used as the solvent in the rate determinations. Prepurified nitrogen was used to deoxygenate the solutions.

Instrumentation. ${ }^{1} \mathrm{H}$ NMR spectral measurements were made on the following instruments: a Varian 360 L operating at 60 MHz ; Varian EM 390 operating at 90 MHz ; and a Nicolet 360 NB FT NMR spectrometer operating at 360 MHz and equipped with a VT unit (four transients, quadrature detection, 16 K data points, $6.1-\mu \mathrm{s}\left(45^{\circ}\right)$ pulse, 3.0-s delay, no resolution or signal enhancement). ${ }^{13} \mathrm{C}$ NMR data were collected on a Varian CFT-20 instrument operating at 20 MHz . Car-bon- 13 data for anisidine ($4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}$) are listed in supplementary material. All NMR spectra were collected at ambient temperature and referenced to TMS. Ligand-exchange rates for slow reactions ($k_{\text {obsd }}<$ $0.1 \mathrm{~s}^{-1}$) were monitored on a Perkin-Elmer Lambda-3 spectrophotometer connected to the 3600 Data Station. Fast reactions were monitored on a Durrum-Gibson D-110 stopped-flow spectrophotometer. All instruments were equipped with thermostated compartments that maintained the reaction solution at $25.0 \pm 0.04{ }^{\circ} \mathrm{C}$.

Rate Measurements. The optimum wavelengths used to monitor the reaction rates were determined as described previously. ${ }^{3}$ Suitable wavelengths were in the range of $410-590 \mathrm{~nm}$ for the complexes studied. Neither products nor reactants demonstrated photoinstability over the

[^2]Table I. Crystallographic Data with Esd's in Parentheses for Compounds 1-3 ${ }^{a}$

formula	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{CoN}_{5} \mathrm{O}_{4}{ }^{+} \\ \mathrm{H}_{2} \mathrm{O}(1) \end{gathered}$	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{CoN}_{5} \mathrm{O}_{5} \\ \mathrm{H}_{2} \mathrm{O}(2) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{CoN}_{5} \mathrm{O}_{4} \\ \mathrm{H}_{2} \mathrm{O}(3) \end{gathered}$
MW	429.4	445.4	443.4
a, \AA	10.998 (1)	8.351 (3)	8.335 (1)
b, \AA	8.417 (2)	27.038 (8)	27.046 (5)
c, \AA	21.859 (2)	9.893 (2)	9.829 (1)
β, deg	96.81 (1)	107.37 (2)	106.71 (2)
$D_{\text {measd }}, \mathrm{g} \mathrm{cm}^{-3}$	1.43	1.38	1.38
$D_{\text {calcd }}, \mathrm{g} \mathrm{cm}^{-3}$	1.42	1.39	1.39
Z	4	4	4
systematic absences	$\begin{gathered} h 0 l(h+l \text { odd }), \\ O k 0(k \text { odd }) \end{gathered}$	$\begin{aligned} & h 0 l(l \text { odd }), \\ & O k 0(k \text { odd }) \end{aligned}$	$\begin{aligned} & h 0 l(l \text { odd }), \\ & 0 k 0(k \text { odd }) \end{aligned}$
space group	$P 2_{1 / n}$	$P 2_{1 / c}$	$P 2_{1 / c}$
μ, cm^{-1}	8.8	8.3	8.3
cryst dimens, cm^{3}	$\begin{aligned} & 0.04 \times 0.05 \times \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.02 \times 0.02 \times \\ & 0.04 \end{aligned}$	$\begin{gathered} 0.03 \times 0.02 \times \\ 0.04 \end{gathered}$
no. of reflens measd	5284	5519	5484
no. of indep reflens $[\mathrm{I}>3 \sigma(I)]$	3006	2909	3523
no. of varied param	244	253	253
R	0.042	0.046	0.043
$R_{\text {w }}$	0.053	0.056	0.065

${ }^{a}$ For all compounds, maximum 2θ (Mo $\mathrm{K} \alpha$) was 56°
period required for the measurements. Absorbance data were collected continuously over at least 3 half-lives with final absorbance taken at ca. 8 half-lives.

Data Analysis. The experimental absorbance vs time rate data were treated with the standard integrated expression for a first-order reaction by using linear least-squares analysis. For reactions following an $\mathrm{S}_{\mathrm{N}} 1$ LIM mechanism and exhibiting mass law rate retardation, the pseudo-first-order rate constants ($k_{\text {obsd }}$) were plotted as $1 / k_{\text {obsd }}$ vs. [L]/[L'] (L $=$ leaving and $\mathbf{L}^{\prime}=$ entering ligands). A linear relationship is found by this analysis, where $1 / k_{1}$, the y intercept, and $k_{-1} / k_{1} k_{2}$, the slope, were determined by a linear least-squares regression analysis. The rate constants are defined as

$$
\begin{aligned}
& * \mathrm{CoL} \underset{k_{4}}{\stackrel{k_{1}}{\longrightarrow}} * \mathrm{Co}+\mathrm{L} \\
& * \mathrm{Co}+\mathrm{L}^{\prime} \xrightarrow{k_{2}} * \mathrm{CoL}^{\prime} \\
& * \mathrm{Co}=\mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}
\end{aligned}
$$

In most cases in this study, [$\left.\mathrm{L}^{\prime}\right] \gg[\mathrm{L}]$ and $1 / k_{\text {obsd }}=1 / k_{1}$. For $\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OMe}$ and $\mathrm{L}=4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}$, rate retardation was employed to bring $k_{\text {obsd }}$ within the measurable region ($\leq 5 \times 10^{1} \mathrm{~s}^{-1}$).

Preparations. 4- $\mathrm{CH}_{3} \mathrm{OPhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Me}\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4-CNpyCo(DH) $\mathrm{CH}_{2} \mathrm{NO}_{2}$. These compounds were prepared as described previously for $2 \mathrm{NH}_{2} \mathrm{pyCo}(\mathrm{DH})_{2} \mathrm{X} .{ }^{21}$
$4-\mathrm{CH}_{2} \mathrm{OPhNH}_{2} \mathrm{Co}\left(\mathrm{DH}_{2}\right) \mathrm{R}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{CF}_{3}, \mathrm{CH}_{2} \mathrm{I}, \mathrm{CH}_{2} \mathrm{Br}, \mathrm{Me}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Si}(\mathrm{Me})_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{CHMe}_{2}, \mathrm{CH}_{2} \mathrm{CMe}_{3}\right)$. These compounds were prepared as described previously ${ }^{22}$ by using the appropriate alkylating agent $\left(\mathrm{ClCH}_{2} \mathrm{CN}, \mathrm{ICH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{I}, \mathrm{ClCH}_{2} \mathrm{Si}\right.$ $\left.(\mathrm{Me})_{3}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Me}, \mathrm{BrCH}_{2} \mathrm{CH}(\mathrm{Me})_{2}, \mathrm{ICH}_{2} \mathrm{C}(\mathrm{Me})_{3}\right)$.
$\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathbf{O M e}\left(\mathrm{~L}=4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}, \mathrm{py}\right)$. Under continuous N_{2} purging, a 4 -fold excess of $\mathrm{Na}(0.83 \mathrm{~g})$ was added to anhydrous MeOH (200 mL), and the mixture was stirred until all the Na had reacted. Then $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{Br}(4.25 \mathrm{~g})$ was added, and the mixture was stirred for 10 min . The N_{2} purging was terminated, the flask was stoppered, and the solution was left to stir at room temperature for 14 h . The solution volume was then reduced by rotoevaporation, and crystallization was induced by adding $\mathrm{H}_{2} \mathrm{O}$ and leaving the mixture at $3^{\circ} \mathrm{C}$ for $1-2$ days. The product was collected by filtration.

4-CNpyCo(DH) $\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{COMe}$. This compound was prepared by the process described previously by Hill ${ }^{23}$ using $4-\mathrm{CNpyCo}(\mathrm{DH})_{2} \mathrm{Cl}$ and $\mathrm{ClCH}_{2} \mathrm{COMe}$.

Crystal Data. Compounds of the type $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$, prepared as above for the anisidine analogues, were crystallized from acetone $/ \mathrm{H}_{2} \mathrm{O}$.
(21) Summers, M. F.; Toscano, P. J.; Bresciani-Pahor, N.; Nardin, G.; Randaccio, L.; Marzilli, L. G. J. Am. Chem. Soc. 1983, 105, 6259.
(22) Stewart, R. C.; Marzilli, L. G. J. Am. Chem. Soc. 1978, 100. 817
(23) Hill, H. A. O.; Morallee, K. G. J. Chem. Soc. A 1969, 554.

Table II. Atomic Positional Parameters of Non-Hydrogen Atoms with Esd's in Parentheses

atom	\boldsymbol{x}	y	z	atom	x	y	z
$\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (1)							
Co	0.30596 (4)	0.19715 (5)	0.10148 (2)	C4	0.1464 (4)	-0.1952 (5)	0.0078 (2)
O1	0.2668 (2)	0.3604 (3)	-0.0138 (1)	C5	0.4581 (4)	0.2918 (6)	0.2811 (2)
O2	0.2530 (3)	-0.1233 (3)	0.1271 (1)	C6	0.4046 (3)	0.2937 (5)	0.2151 (1)
O3	0.3524 (3)	0.0313 (4)	0.2157 (1)	C7	0.4048 (3)	0.4351 (4)	0.1759 (2)
O4	0.3600 (2)	0.5183 (3)	0.0752 (1)	C8	0.4482 (4)	0.5940 (5)	0.1976 (2)
O5	0.4838 (2)	0.2268 (3)	-0.0566 (1)	C9	0.1373 (3)	0.2585 (5)	0.1224 (2)
N 1	0.2518 (2)	0.2234 (3)	0.0174 (1)	Cl 10	0.0897 (4)	0.4172 (6)	0.1028 (3)
N2	0.2466 (3)	-0.0090 (3)	0.0840 (1)	C11	0.5894 (3)	0.1843 (4)	0.1162 (1)
N3	0.3574 (3)	0.1715 (4)	0.1856 (1)	C12	0.6362 (3)	0.1038 (5)	0.1686 (2)
N4	0.3629 (2)	0.4036 (3)	0.1192 (1)	C13	0.7383 (4)	0.1632 (6)	0.2048 (2)
N5	0.4825 (2)	0.1249 (3)	0.0789 (1e	C14	0.7918 (4)	0.3043 (6)	0.1893 (2)
Cl	0.1523 (4)	0.1041 (6)	-0.0779 (2)	C15	0.7434 (3)	0.3843 (5)	0.1371 (2)
C2	0.2011 (3)	0.1010 (4)	-0.0115 (2)	C16	0.6414 (3)	0.3265 (4)	0.1008 (2)
C3	0.1980 (3)	-0.0369 (4)	0.0280 (2)				
$\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ (2)							
Co	0.19871 (6)	0.12025 (2)	0.51911 (5)	C4	0.2344 (7)	0.0497 (2)	0.8988 (5)
O1	0.4763 (3)	0.0623 (1e	0.5068 (3)	C5	-0.0918 (7)	0.2339 (2)	0.2861 (6)
O 2	0.0260 (3)	0.1205 (1)	0.7269 (3)	C6	0.0298 (5)	0.1938 (2)	0.3463 (5)
O3	-0.0696 (4)	0.1832 (1)	0.5362 (3)	C7	0.1516 (5)	0.1747 (2)	0.2791 (4)
O4	0.3586 (3)	0.1173 (1)	0.3006 (3)	C8	0.1658 (7)	0.1927 (2)	0.1407 (5)
O5	0.3943 (6)	0.2118 (2)	0.5701 (5)	C9	0.3502 (6)	0.1725 (2)	0.6357 (5)
O6	-0.1804 (3)	0.0376 (1)	0.6036 (3)	C10	0.5491 (9)	0.2051 (4)	0.534 (1)
N1	0.3685 (4)	0.0727 (1)	0.5800 (3)	C11	-0.0874 (5)	0.0794 (2)	0.2687 (4)
N2	0.1536 (4)	0.1010 (1)	0.6860 (3)	C12	-0.2395 (5)	0.1010 (2)	0.2627 (4)
N3	0.0367 (4)	0.1704 (1)	0.4615 (4)	C13	-0.3430 (6)	0.1181 (2)	0.1354 (5)
N4	0.2438 (4)	0.1402 (1)	0.3523 (3)	C14	-0.2966 (7)	0.1141 (3)	0.0155 (5)
N5	0.0253 (4)	0.0646 (1)	0.4021 (3)	C15	-0.1483 (7)	0.0930 (3)	0.0202 (5)
Cl	0.5031 (6)	0.0113 (2)	0.7623 (5)	C16	-0.0403 (6)	0.0747 (2)	0.1471 (5)
C 2	0.3777 (5)	0.0505 (2)	0.6983 (4)	O51a	0.5000	0.1600	0.7300
C3	0.2508 (5)	0.0676 (2)	0.7622 (4)	C101 ${ }^{\text {a }}$	0.6320	0.1610	0.6600
Col $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ (3)							
O1	0.4839 (2)	0.06504 (9)	0.52081 (4)	C4	-0.2440 (5)	0.0508 (2)	0.8997 (4)
O 2	0.0354 (3)	0.1221 (1)	0.7309 (2)	C6	0.0233 (4)	0.1924 (1)	0.3402 (4)
O3	-0.0680 (3)	0.1835 (1)	0.5365 (3)	C7	0.1466 (4)	0.1747 (1)	0.2708 (3)
O4	0.3632 (3)	0.1203 (1)	0.2943 (2)	C8	0.1508 (5)	0.1903 (2)	0.1267 (4)
O5	-0.1747 (3)	0.0402 (1)	0.6084 (3)	C9	0.3695 (4)	0.1804 (1)	0.6181 (4)
N1	0.3803 (3)	0.07653 (9)	0.5800 (2)	C10	0.5452 (5)	0.1744 (2)	0.6129 (5)
N2	0.1657 (3)	0.1043 (1)	0.6893 (2)	Cl 1	0.3593 (5)	0.1935 (2)	0.7642 (4)
N3	0.0397 (3)	0.1714 (1)	0.4612 (3)	C12	-0.0719 (3)	0.0770 (1)	0.2756 (3)
N4	0.2471 (3)	0.1426 (1)	0.3479 (3)	C13	-0.2250 (4)	0.0986 (1)	0.2675 (3)
N5	0.0422 (3)	0.0656 (1)	0.4122 (2)	C14	-0.3302 (4)	0.1123 (2)	0.1367 (4)
Cl	0.5066 (4)	0.0118 (1)	0.7547 (4)	C15	-0.2834 (5)	0.1050 (2)	0.0159 (4)
C 2	0.3880 (3)	0.0532 (1)	0.6970 (3)	C16	-0.1317 (5)	0.0840 (2)	0.0240 (4)
C3	0.2620 (4)	0.0701 (1)	0.7631 (3)	C17	-0.0241 (4)	0.0689 (2)	0.1541 (3)

${ }^{a} \mathrm{O} 51$ and Cl 01 were not refined.

For the three compounds characterized in this study with $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Me}$ (1), $\mathrm{CH}_{2} \mathrm{OMe}$ (2), and i - Pr (3), cell dimensions were determined from Weissenberg and precession photographs and refined on a CAD4 automated Nonius single-crystal diffractometer. The results are given in Table I. The intensity data were collected by the $\omega-2 \theta$ scan technique with use of graphite-monochromatized Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.7107 \AA$). Three standard reflections, measured every 50 min , showed no systematic variation throughout the data collections. The intensities for which $I>$ $3 \sigma(I)$ were corrected for Lorentz and polarization factors and anomalous dispersion but not for extinction. No absorption correction was applied because of the small size of the crystals employed and the low value of μ (Table I).

Solution and Refinement of the Structures. All the structures were solved by conventional Patterson and Fourier methods and refined by full-matrix least-squares methods. For all the compounds, the waters of crystallization were located on the Fourier maps. In 2 the alkyl group was found to be disordered, and on the basis of the respective electron peak density on the Fourier map, the OMe group was located at two different positions with occupancy factors of 0.8 and 0.2 , respectively. The contribution of hydrogen atoms at calculated positions (except those attached to C10 in 2), as well as non-hydrogen atoms of OMe in $\mathbf{2}$ in the lowest occupancy orientation, was held constant ($B=5.0 \AA^{2}$) and included in the final anisotropic refinement. Final R and R_{w} values are given in Table I. The final weighting schemes $\left(w=1 /\left(\sigma^{2}(F)+(p F)^{2}\right.\right.$ $+q$), where $p=0.02$ and $q=1.0$) for all structures were chosen so as to maintain $w\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}$ essentially constant over all ranges of F_{o} and $\sin \theta / \lambda$. Atomic scattering factors are also given in ref 24 . All the
calculations were done with computer programs from Enraf-Nonius SDP programs. ${ }^{25}$ Final positional parameters for non-hydrogen atoms are given in Table II, Anisotropic thermal parameters, calculated and observed structure factors, hydrogen atom fractional coordinates, and a full list of bond lengths and angles have been deposited as supplementary material.

Results

Evolution of This Study. It is instructive to outline the process that led to the accumulation of results and the treatment of the data. The $\mathrm{CH}_{2} \mathrm{OMe}$ compound represents one of the most severe departures from any predictable behavior of cobaloximes based on σ^{*} values. For example, such deviations appear in both lig-and-exchange rates for $4-\mathrm{CNpy}$ and ${ }^{13} \mathrm{C}$ data for the $\gamma-\mathrm{C}$ of pyridine in the respective $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{OMe}$, results that give an indication of the trans effect (kinetics) and trans influence (ground state), respectively, of the alkyl group (vide infra). Preliminary graphical analysis of the data followed by standard computerized treatment made it clear that a dual-substituentparameter (DSP) approach could resolve this anomaly for

[^3]

Figure 1. ortep drawing (thermal ellipsoid; 50\% probability) for compound $\mathbf{1}$ with the non-hydrogen atoms numbering scheme.
$\mathrm{CH}_{2} \mathrm{OMe}$ and for other $\mathrm{CH}_{2} \mathrm{Y}$ compounds if Y was treated as the substituent. The DSP approach is described in detail elsewhere. ${ }^{14,15}$ Briefly, the difference in a measure of energy, Δ (meas), for a compound with one Y substituent and that for a standard Y substituent (usually H , but in this study Me), is correlated with an inductive parameter (σ_{I}) and a resonance parameter (σ_{R}) according to

$$
\Delta(\text { meas })=\rho_{\mathrm{I}} \sigma_{1}+\rho_{\mathrm{R}} \sigma_{\mathrm{R}}
$$

The values for σ_{I} and σ_{R} are zero for the standard Y group. Depending on the type of measurement, different σ_{R} values may be useful. ${ }^{14.26}$ We have found that $\sigma_{\mathrm{R}}{ }^{+}$and $\sigma_{\mathrm{R}}{ }^{0}$ give the best results for correlation of $\Delta \log k_{1}$ and ${ }^{13} \mathrm{C}$ shifts, respectively.

On the basis of these findings, we prepared and studied additional 4-CNpy and py compounds with $\mathrm{CH}_{2} \mathrm{Y}$ where $\sigma_{\mathrm{I}}, \sigma_{\mathrm{R}}{ }^{0}$, and $\sigma_{\mathrm{R}}{ }^{+}$are known for $\mathrm{Y} .{ }^{14}$ Rather extensive information is available on the $4-\mathrm{CNpy}$ dissociation rates from $4-\mathrm{CNpyCo}-$ (DH) 2 R and on pyCo(DH) $)_{2} \mathrm{R}^{13} \mathrm{C}$ spectra and structure. ${ }^{1}$ However, interpretation of the trends from such studies is subject to uncertainties (vide infra), and we felt it was essential to obtain an X-ray structure of an $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{OMe}$ compound. Unfortunately, many attempts at obtaining satisfactory crystals of $\mathrm{pyCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{OMe}$ have failed.

For comparisons of any structurally characterized LCo(DH) $\mathrm{CH}_{2} \mathrm{OMe}$ compound, there is a need for other structurally characterized compounds of the type $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{R}$ with the same L. Crystals of $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ are readily obtained, and we succeeded in preparing $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{OMe}$ crystals. Furthermore, the range of trans effect of R ligands is quite large (a million fold), and the related ligand $4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}$ gives compounds with dissociation rates at the upper end of measurable rates for good trans labilizing R groups. Thus, the ligand-exchange rates of a series of $4-\mathrm{CH}_{3} \mathrm{OPh} \mathrm{NH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ compounds could be studied conveniently even for compounds with weak trans effect R groups.

In the remainder of this section, we will describe (a) the $\mathrm{PhNH} \mathrm{H}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ structures studied here, (b) the ligand-exchange results, (c) the ${ }^{13} \mathrm{C}$ NMR results, (d) the DSP approach for ligand-exchange rates, and (e) the DSP approach for ${ }^{13} \mathrm{C}$ results.

Description of the Structures. The ORTEP drawings with the atom numbering scheme for 1-3 are given in Figures 1-3, respectively. Bond lengths and angles of the $\mathrm{Co}(\mathrm{DH})_{2}$ unit are quite normal. ${ }^{1}$ In all the structures, the cobalt atom has a distorted octahedral geometry, with the PhNH_{2} and the alkyl groups occupying the axial positions. The four N atoms of the equatorial

[^4]

Figure 2. ORTEP drawing (thermal ellipsoid; 50% probability) for compound 2 with the non-hydrogen atoms numbering scheme.

Figure 3. ORTEP drawing (thermal ellipsoid; 50\% probability) for compound 3 with the non-hydrogen atoms numbering scheme.
ligand are coplanar with deviations from their mean plane not larger than $0.04 \AA$. The $\mathrm{O} \ldots \mathrm{O}$ distances of the oxime bridge vary from 2.478 (3) \AA in 1 to 2.495 (5) \AA in $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2}($ adamantyl). ${ }^{27}$
The crystals of all compounds are built up by discrete $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ molecules held together by van der Waals forces. In addition, two oxime O atoms of the complexes are involved in hydrogen bonding with the water of crystallization, and two different hydrogen bonding schemes are found. In 1, the oxygen atoms of the oxime bridge involved in the hydrogen bond belong to different "DH" units, while in 2 and $\mathbf{3}$ they belong to the same "DH" moiety. The scheme for $\mathbf{1}$ was also found in crystals of other $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ complexes with $\mathrm{R}=\mathrm{Me}$ and $\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me})\left(\mathrm{COOEt}_{2}\right.$, and for $\mathrm{R}=$ adamantyl, one crystallographically independent molecule exhibits a scheme similar to that of $\mathbf{1}$, the other a scheme similar to that of $\mathbf{2}$ and $3 .{ }^{27}$ As will be discussed in a later paper, ${ }^{27}$ the equatorial ligands of molecules with H -bonding schemes similar to $\mathbf{1}$ are best formulated as $(\mathrm{DH})_{2}$, whereas those with schemes similar to $\mathbf{2}$ and $\mathbf{3}$ can be formulated as $\left(\mathrm{D}^{2-} \mathrm{DH}_{2}\right)$. Palenik et al. ${ }^{28}$ have attributed this latter arrangement to a π-bonding interaction between the Ph group of

[^5]Table III. Rate and NMR Spectroscopic Data for $\operatorname{LCo}(\mathrm{DH})_{2} \mathrm{R}^{a}$

R	$\log k_{1}, \mathrm{~s}^{-1}$		${ }^{13} \mathrm{C}^{6}$			
				$\mathrm{C}-\mathrm{N}$ -	$\mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{H}$
	4-CNpy	$4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}$	$\gamma-\mathrm{C}$ (py)	$\left(4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right)$	$\left(4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right)$	$\left(4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right)^{\text {c }}$
$\mathrm{CH}_{2} \mathrm{OMe}$	1.38	2.18	137.24	132.14	156.29	120.21
$\mathrm{CH}_{2} \mathrm{Me}$	-0.018	0.892	137.34	131.76	156.44	120.48
$\mathrm{CH}_{2} \mathrm{Ph}$	-0.48	0.447	137.36	131.35	156.60	120.64
$\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-0.37	0.152	137.42	130.93	156.79	120.72
Me	-1.39	-0.328	137.48	131.48	156.62	120.58
$\mathrm{CH}_{2} \mathrm{Cl}$	-2.51	-1.47	137.91	131.01	157.00	120.94
$\mathrm{CH}_{2} \mathrm{COMe}$	-3.23	-2.49	137.95	130.07	157.17	121.20
$\mathrm{CH}_{2} \mathrm{Br}$	-2.59	-1.76	137.96	130.91	157.01	121.01
$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	-3.57	-2.62	137.97	130.14		121.19
$\mathrm{CH}_{2} \mathrm{I}$	-2.80	-2.03	137.98	130.79	157.06	121.01
$\mathrm{CH}_{2} \mathrm{CF}_{3}$	-3.57	-2.96	138.03	129.98	157.32	121.21
$\mathrm{CH}_{2} \mathrm{CN}$	-4.52	-3.77	138.25			
$\mathrm{CH}_{2} \mathrm{NO}_{2}$	-5.37		138.46			
$\mathrm{CH}_{2} \mathrm{CMe}_{3}{ }^{\text {d }}$	1.04	1.54	137.29	131.29	156.55	120.54
$\mathrm{CH}_{2} \mathrm{CHMe}_{2}{ }^{\text {d }}$	0.146	1.11	137.32	131.54	156.48	120.48
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}^{d}$	0.079	0.932	137.32	131.69	156.50	120.48
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}^{d}$	-1.59	-0.81	137.78	130.63	156.91	120.79

${ }^{a}$ Rates measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; T=25.0^{\circ} \mathrm{C}$. NMR measurements were made in CDCl_{3} at ambient T; internal reference TMS. See text for further details. ${ }^{b}$ Shifts in ppm for aromatic C's. Values for $\gamma-\mathrm{C}$ (py) from ref 1 or this study. ${ }^{c}$ Downfield signal for CH ; assignment not made. ${ }^{d}$ Values for $\sigma_{\mathrm{R}}{ }^{+}$are not available for the Y of these groups.
axial ligands and the dioxime. However, we prefer to attribute this effect to differences in H bonding, since the orientation of the Ph group is largely independent of the $(\mathrm{DH})_{2}$ or $\left(\mathrm{D}^{2-} \mathrm{DH}_{2}\right)$ formulations. ${ }^{27}$
Dependence of Ligand-Exchange Rates on R. Observed firstorder rate constants analyzed below are collected in the supplementary material, including both new measurements and previously determined values. A summary of these data can be found in Table III, and error limits and other details can be found in the supplementary tables. The exchange reactions are classical examples of $\mathrm{S}_{\mathrm{N}} 1$ LIM behavior, and the dependence of reaction rates on both L and R for cobaloximes has been analyzed by us and others in several previous papers. ${ }^{1}$
${ }^{13} \mathrm{C}$ NMR Data. Selected ${ }^{13} \mathrm{C}$ chemical shifts for the pyCo(DH) ${ }_{2} \mathrm{CH}_{2} \mathrm{Y}$ and $4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{Y}$ compounds evaluated in this study are presented in Table III.

Analysis of the dependence of ${ }^{13} \mathrm{C}$ shifts on R is more complex than L dissociation rates. Not only does the question arise as to the influence of R, but also there may not be a clear relationship between the electronic effect of R and the measured shift. Additionally other factors, such as solvation, heavy-atom effects, etc., could influence these shifts. ${ }^{1,29,30}$ However, several studies indicate that shifts for C atoms or P atoms remote from the Co center reflect the trans $\mathrm{Co}-\mathrm{N}$ bond lengths, which are, in turn, clearly influenced by the electronic properties of R. ${ }^{1}$ For C atoms close to the Co center, for other nuclei (e.g. P) directly bound to Co , and for ${ }^{1} \mathrm{H}$, the shifts can be influenced by the anisotropy of Co or of the other ligands bound to the Co. ${ }^{1,20,29,31}$ Thus, shifts of the γ-C of pyridine have proved useful in the past. ${ }^{1}$ Since the $4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}$ compounds were available, we have also recorded ${ }^{13} \mathrm{C}$ spectra for these compounds and found a good correlation with the pyridine series. It is especially important to note that a relatively large data set is required to analyze NMR shift correlations since anomalies are quite common. This requirement has hindered the study of metal compounds in comparison to organic compounds, where a larger number and greater diversity of related compounds are usually available. ${ }^{26}$

DSP Analysis of Exchange Rates. Early in the analysis, it became clear that typically the data for $\mathrm{Y}=\mathrm{H}(\mathrm{R}=\mathrm{Me})$ were in poor agreement with those from other R groups. Unlike organic compounds where the $\mathrm{C}-\mathrm{C}$ bond lengths are quite insensitive to steric effects, organocobalt compounds have a very broad range of $\mathrm{Co}-\mathrm{C}$ bond lengths. ${ }^{1}$ However, there is relatively little dif-

[^6]Table IV. Organic Substituent Constants from the Literature
$\underline{\text { Rescaled to } \sigma_{\mathrm{Me}}=0}$

Y	σ_{1}	$\sigma_{\mathrm{R}}{ }^{0}$	$\sigma_{\mathrm{R}}{ }^{+}$
OMe	0.31	-0.34	-0.77
Me	0	0	0
Ph	0.14	0	-0.05
SiMe		-0.06	0.17
H	0.04	0.11	0.31
Cl	0.5	-0.12	0.25
COMe	0.32	0.27	-0.11
Br	0.48	-0.08	-0.05
$\mathrm{CO}_{2} \mathrm{Me}$	0.34	0.25	0.39
I	0.43	-0.05	0
CF_{3}	0.49	0.19	0.33
CN^{2}	0.6	0.24	0.38
NO_{2}	0.69	0.26	0.4

Table V. Summary of Statistical Results for the
Dual-Substituent-Parameter Calculations Where Values Were
Normalized to Me or to $\mathrm{CH}_{2} \mathrm{Me}$

observable	$\sigma_{\mathrm{H}}=0$		$\sigma_{\mathrm{Me}}=0$		
	f^{a}	$1 \mathrm{cc}{ }^{\text {b }}$	f^{a}	$1 \mathrm{cc}^{\text {b }}$	$\rho_{\mathrm{R}} / \rho_{1}{ }^{\text {d }}$
$\log k_{1}\left(4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right)$	0.104	0.9955	0.073	0.9978	0.667
$\log k_{1}(4-\mathrm{CNpy})$	0.160	0.9891	0.093	0.9963	0.665
$\gamma-\mathrm{C}(\mathrm{py}), \delta\left({ }^{13} \mathrm{C}\right)$	0.196	0.9843	0.165	0.9884	0.738
$\left.\underset{\delta\left({ }^{(13} \mathrm{C}\right)}{\mathrm{C}-\mathrm{CH}}{ }_{3} \mathrm{OPhNH}_{2}\right),$	0.284	0.9666	0.148	0.9910	1.46
$\underset{\delta\left({ }^{3} \mathrm{C}\right)}{\mathrm{C}}\left(4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right),$	0.267	0.9710	0.187	0.9859	1.08
$\underset{\delta\left({ }^{13} \mathrm{C}\right)}{\mathrm{C}} \mathrm{C}\left(4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right),$	c	c	0.187	0.9856	1.23

${ }^{a} f$ test values (f) less than 0.1 are considered "excellent", and values less than 0.2 are considered "good"; see ref $15 .{ }^{\text {b }}$ lcc $=$ linear correlation coefficient. ${ }^{c}$ Not determined. ${ }^{d}$ This ratio provides an indication of the relative importance of the resonance and inductive contributions. ${ }^{15}$ The ρ_{R} and ρ_{1} values are given in captions for Figures 4-6.
ference between $\mathrm{Co}-\mathrm{C}$ bond lengths in $\mathrm{CH}_{2} \mathrm{Y}$ compounds as compared to the difference in $\mathrm{Co}-\mathrm{C}$ bond length between $\mathrm{CH}_{2} \mathrm{Y}$ compounds CH_{3} or CHY_{2} compounds. Therefore, since the analysis of necessity perfectly fits the 0,0 point, we felt a more reasonable zero was $\mathrm{CH}_{2} \mathrm{Me}$ (i.e., $\sigma_{1}, \sigma_{\mathrm{R}}{ }^{+}$, and $\sigma_{\mathrm{R}}{ }^{0}$ for $\mathrm{Y}=\mathrm{Me}$ were set equal to zero (Table IV)). This change improved the overall fit as judged by the f test and the correlation coefficient (Table V). For example, an f value of $0.2-0.1$ is considered good, whereas a value below 0.1 is considered excellent. ${ }^{15}$ For both series of ligand-exchange rates, the fits were excellent (Figure 4; supplementary material). This result is particularly gratifying in view of the much greater range of rates we have studied in comparison

Figure 4. Plots of measured values of $\Delta \log k_{1}$ for $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{Y}$ vs values calculated with the following relationships. Top: $\mathrm{L}=4-\mathrm{CNpy}$; $\Delta \log k_{1}=-5.53\left(\sigma_{1}\right)-3.68\left(\sigma_{\mathrm{R}}{ }^{+}\right)$. Bottom: $\mathrm{L}=4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2} ; \Delta \log$ $k_{1}=-5.68\left(\sigma_{1}\right)-3.79\left(\sigma_{\mathrm{R}}{ }^{+}\right)$.

Figure 5. Left: Plot of $\Delta \delta$ for the $\gamma-\mathrm{C}$ in the series pyCo(DH) $\mathrm{CH}_{2} \mathrm{Y}$ vs values calculated with the relationship $\Delta \delta=1.24\left(\sigma_{\mathrm{I}}\right)+0.91\left(\sigma_{\mathrm{R}}{ }^{\circ}\right)$. Right: Plot of $\Delta \delta$ for ${ }^{13} \mathrm{C}-\mathrm{O}$ in the series $4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{Y}$ vs values calculated with the relationship $\Delta \delta=1.35\left(\sigma_{1}\right)+1.46\left(\sigma_{\mathrm{R}}{ }^{\mathrm{O}}\right)$.
to those typically found for more purely organic systems.
DSP Analysis of ${ }^{13} \mathrm{C}$ Shifts. With σ values of zero for $\mathrm{Y}=\mathrm{H}$, only the ${ }^{13} \mathrm{C}$ shift data in the pyridine series in Table V give a good fit. However, when the σ values are normalized to $\mathrm{Y}=\mathrm{Me}$, all four series of shifts in Table V give good fits (Figures 5 and 6). It should be noted that slight additional improvements can be made if the values for $\mathrm{Y}=\mathrm{I}$ are excluded from the analysis.

Discussion

General Approaches Used Previously. Accurate theoretical treatments of ligand effects on reactivity, structure, and spectral properties of transition-metal compounds are hampered by the large basis sets needed for metal centers. Thus, prediction of properties and interpretation of trends have depended on empirical data combined with qualitative theory. Cobaloximes appear to be representative of most metal centers. ${ }^{12}$ Unfortunately, very often systematic studies of a series of compounds have been limited to relatively few examples in each series, and it is quite uncommon to have the extensive series of compounds and measurements available in organic systems. ${ }^{12,15}$ Thus, attempts have been made to utilize the organic substituent parameters in several ways. First,

Figure 6. Same series for Figure 5 right. Top: ${ }^{13} \mathrm{C}=\mathrm{C} ; \Delta \delta=1.14\left(\sigma_{1}\right)$ $+1.40\left(\sigma_{\mathrm{R}}{ }^{0}\right)$. Bottom: ${ }^{13} \mathrm{C}-\mathrm{N} ; \Delta \delta=-2.37\left(\sigma_{1}\right)-3.46\left(\sigma_{\mathrm{R}}{ }^{0}\right)$.
the metal center could be viewed as a substituent on the organic moiety $\mathrm{C}_{n} \mathrm{H}_{n} \mathrm{Z}$, such as $\mathrm{LMC}_{n} \mathrm{H}_{x} \mathrm{Z}$. ${ }^{18.32}$ By measuring some property of the function Z (${ }^{19} \mathrm{~F}$ NMR, $\mathrm{p} K_{\mathrm{a}}$, reaction rate, etc.), the substituent effect of LM can be established with reference to $\mathrm{YC}_{n} \mathrm{H}_{x} \mathrm{Z}$. Systematic variation of L can provide information about the properties of L. Second, $L M-\mathrm{C}_{6} \mathrm{H}_{4}-Y$ and $L M-$ $\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Y}$ compounds can be studied as a function of $\mathrm{Y} .{ }^{15}$ Within such series, the properties of Y are transmitted to LM in a manner easily correlated with organic systems. The binding of Y is to the aromatic ring and not to the metal. Third, LMR compounds can be studied, and the substituent effect of R from organic chemistry can be used directly. ${ }^{16,17}$

The previous most extensive investigation of organocobalt compounds employed this third approach. ${ }^{16,17}$ Correlations with σ^{*} gave some good LFER's (mainly involving exchange rates) and some curved relationships (mainly involving equilibria) for cobaloximes. We call this method the " σ * approach". The analysis of the nonlinear relationships found with the σ^{*} approach is complex, and the reader is referred to the original accounts. ${ }^{16,17}$ Briefly, it was concluded that the curvature was indicative of the presence of five-coordinate species $\mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$, which were particularly stable when R was a good donor; i.e. σ^{*} has a negative value ($i-\mathrm{Pr}, \mathrm{CH}_{2} \mathrm{Me}$).

However, in the analysis of both exchange rates and equilibria with the σ^{*} approach, certain R groups were often, although not always, excluded. These include $\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{I}$, and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OMe}$. No satisfactory reason was found for excluding these compounds. It was felt that steric effects could be important but, earlier, Brown and his co-workers noted that the trans effect order $\mathrm{CH}_{2} \mathrm{Cl}>\mathrm{CH}_{2} \mathrm{Br}$ was also opposite to predictions based on steric effects. ${ }^{19}$

Approach Developed in This Study. Since the $\mathrm{CH}_{2} \mathrm{OMe}$ group plays such an important role in our analysis, we felt it necessary to structurally characterize a derivative. A complete discussion of the structural features of $\mathbf{1 - 3}$ is best presented in the context of our other studies of these PhNH_{2} analogues. ${ }^{27}$ The feature of primary interest here is the length of the $\mathrm{Co}-\mathrm{N}\left(\mathrm{PhNH}_{2}\right)$ bond. This bond length increases from 2.019 (2) \AA in $\mathrm{PhNH}_{2} \mathrm{Co}-$ $(\mathrm{DH})_{2} \mathrm{Cl}^{33}$ to 2.129 (1) \AA for $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{Me}$ to 2.215 (4)
(32) Hosomi, A.; Traylor, T. G. J. Am. Chem. Soc. 1975, 97, 3682 and references therein.
(33) Botoshanskii, M. M.; Simonov, Yu. A.; Malinovskii, T. 1.; Simonov, M. A. Dokl. Chem. (Engl. Transl.) 1975, 225, 625.

Table VI. Structural Parameters of the $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ Fragment

R	$\mathrm{Co}-\mathrm{N}, \AA$	$\mathrm{Co}-\mathrm{C}, \AA$	$\mathrm{N}-\mathrm{Co}-\mathrm{C}, \mathrm{deg}$	$\mathrm{Co}-\mathrm{C}-\mathrm{C}, \mathrm{deg}$	$\mathrm{Co}-\mathrm{N}-\mathrm{Ph}, \operatorname{deg}$	d, \AA	α, deg
Me^{a}	$2.129(1)$	$1.992(2)$	$178.19(7)$		$118.2(1)$	+0.035	+3.5
$\mathrm{CH}_{2} \mathrm{Me}$	$2.147(2)$	$2.030(3)$	$178.3(1)$	$117.8(3)$	$118.1(2)$	+0.014	+2.8
$\mathrm{CH}_{2} \mathrm{OMe}$	$2.169(3)$	$2.013(4)$	$176.4(2)$	$119.4(3)^{c}$	$116.6(2)$	+0.026	+2.7
$i-\mathrm{Pr}$	$2.177(2)$	$2.068(3)$	$178.3(1)$	$114.2(2)^{b}$	$117.5(2)$	-0.017	-5.6

${ }^{a}$ Reference 27. ${ }^{b}$ Mean values. ${ }^{c} \mathrm{Co}-\mathrm{C}-\mathrm{O}$.
\AA in $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2}\left(\right.$ adamantyl). ${ }^{27}$ This distance in $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{OMe}$ is 2.169 (3) \AA, a value establishing the trans influence of $\mathrm{CH}_{2} \mathrm{OMe}$ as being essentially the same as $i-\mathrm{Pr}$ in $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2}-i-\mathrm{Pr}(\mathrm{Co}-\mathrm{N}=2.177$ (2) $\AA)$ and somewhat greater than $\mathrm{CH}_{2} \mathrm{Me}$ in $\mathrm{PhNH}_{2} \mathrm{Co}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{Me}(\mathrm{Co}-\mathrm{N}=2.147$ (2) \AA). Other structural features of these compounds are given in Table VI along with those for $\mathrm{R}=\mathrm{Me}$. It is clear that $\mathrm{CH}_{2} \mathrm{OMe}$ has no unusual structural effects that could account for the long $\mathrm{Co}-\mathrm{N}\left(\mathrm{PhNH}_{2}\right)$ bond length. In particular, if the long bond were the result of the bulk of $\mathrm{CH}_{2} \mathrm{OMe}$, we would have expected d (the displacement of Co out of the four N equatorial plane) to be negative (displacement toward $\mathrm{CH}_{2} \mathrm{OMe}$) and the dihedral angle, α, between the planes of dimethylglyoxime moieties to be negative (bending toward PhNH_{2}). Furthermore, the α and d values for $\mathrm{CH}_{2} \mathrm{Me}$ and $\mathrm{CH}_{2} \mathrm{OMe}$ are similar, suggesting a similar bulk for these ligands. On the basis of published structural information on cobaloximes, the class of organometallic compounds most extensively studied by X-ray diffraction methods, ${ }^{1}$ there is good evidence for assuming that steric effects will not vary so greatly across the $\mathrm{CH}_{2} \mathrm{Y}$ series as to preclude a meaningful analysis. Justification of this assumption will derive from the excellent correlation of our data to be described below.

Comparison of Approaches to the Use of Organic Substituent Constants. The first approach given above is less relevant to this study in that the metal center is viewed as a substituent. However, Traylor's studies in this area ${ }^{32}$ lead to valuable insights into the binding in our compounds (see below).

The second approach is limited to aromatic R groups. Substituents on aromatic rings lead to comparatively small variations in properties of metal centers. For our purposes, a large range of properties is desirable and the biologically relevant organocobalt compounds are limited to $\mathrm{CH}_{2} \mathrm{Y}$ type R groups.

The third approach is not restricted to $\mathrm{CH}_{2} \mathrm{Y}$ and at present is superior to our approach in the range of R ligands that may be studied. However, below we illustrate that our approach can be extended beyond $\mathrm{CH}_{2} \mathrm{Y}$ ligands. Given our current limitations, we now compare in detail our DSP approach with the σ^{*} approach, the most extensive application of the third approach.

Ehrenson, Brownlee, and Taft ${ }^{34}$ have concluded that an analysis of substituent effects should rely on data from representative compounds with four classes of substituents (a: NR $2, \mathrm{OMe}$. b: $\mathrm{CF}_{3}, \mathrm{CO}_{2} \mathrm{R}, \mathrm{COMe}, \mathrm{CN}, \mathrm{NO}_{2}$. c: H, Me. d: $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$). Although Brown and co-workers were treating the entire R group as a substituent, ${ }^{16,17}$ we attribute their previous success with the σ^{*} approach in obtaining linear correlations to the use of compounds from only two of the four classes of substituents. We have used compounds from all four classes.

It should be noted that ligand dissociation rates we have measured in noncoordinating solvents correlate linearly with those reported in aqueous solution. ${ }^{16.17}$ This correlation extends to R groups we cannot analyze by our methods, either because they do not fall into the class of $\mathrm{CH}_{2} \mathrm{Y}$ or because $\sigma_{\mathrm{I}}, \sigma_{\mathrm{R}}{ }^{+}$, and $\sigma_{\mathrm{R}}{ }^{0}$ are not available for Y. However, we believe that since σ^{*} is inadequate for R groups of the class $\mathrm{CH}_{2} \mathrm{Y}$ we have studied, the use of σ^{*} is inappropriate for all R groups. Again, dissociation rates for $i-\mathrm{Pr}$ and $\mathrm{CH}_{2} \mathrm{OMe}$ compounds are almost identical. The σ^{*} values are -0.19 and +0.52 , respectively. ${ }^{13}$ This range of σ^{*} values exceeds many of the ranges used previously where nonlinearity was observed. ${ }^{16.17}$

If the σ^{*} approach were appropriate, the dissociation rates for $\mathrm{LCo}(\mathrm{DH})_{2} \mathrm{CH}_{2} \mathrm{OMe}$ should be about 10^{3} times slower than those

[^7]we observed. Brown's principal conclusion that five-coordinate $\mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}$ species exist in aqueous solution was based on several types of experimental observations. ${ }^{16,17}$ However, the quantitative calculations of equilibrium constants for the reaction, $\mathrm{H}_{2} \mathrm{OCo}-$ $(\mathrm{DH})_{2} \mathrm{R} \rightleftharpoons \mathrm{Co}(\mathrm{DH})_{2} \mathrm{R}+\mathrm{H}_{2} \mathrm{O}$, need to be reevaluated since the calculations are based on σ^{*} values.

It should be noted that σ^{*} and σ_{1} are related. ${ }^{13}$ The success of our approach depends both on the introduction of the resonance term and on the transmission of the substituent effect via an intervening organic moiety. This second feature is shared with the second approach mentioned above.

Potential Extensions. It would be valuable to extend our analysis to $\mathrm{CHY}_{1} \mathrm{Y}_{2}$ and $\mathrm{CY}_{1} \mathrm{Y}_{2} \mathrm{Y}_{3}$ derivatives. Recently, we proposed a scale of substituent parameters (EP) based on ${ }^{13} \mathrm{C}$ NMR shifts. ${ }^{35}$ This scale had the relationship

$$
E P=\Delta Y_{1}+\Delta Y_{2}+\Delta Y_{3}
$$

Here, ΔY_{i} is a substituent constant for substituent Y_{i}. Since steric effects were not considered, the constant for the $C Y_{1} Y_{2} Y_{3}$ group was considered to be an electronic parameter (EP).

In that study, ${ }^{35}$ it was clear that the effects of Y_{i} on ${ }^{13} \mathrm{C}$ NMR shifts were additive. In the present study, we have shown that ${ }^{13} \mathrm{C}$ shifts can be correlated with organic substituent constants. ${ }^{36}$ Therefore, we believe that eventually the two approaches can be combined and that organic substituent constants for Y_{1} and Y_{2}, for example, can be used to explain the effects of R groups of the type $\mathrm{CHY}_{1} \mathrm{Y}_{2}$. A potential problem is that steric effects are likely to be more important when data from much bulkier R groups are analyzed. However, a preliminary analysis is promising. Unfortunately, the basis of the analysis must begin with $\mathrm{R}=\mathrm{Me}$ since the substituents are replacing more than one H . Thus, the following equation holds:

$$
\Delta \text { (meas) }=\rho_{1}\left({ }^{1} \sigma_{I}+{ }^{2} \sigma_{I}+{ }^{3} \sigma_{1}\right)+\rho_{\mathrm{R}}\left({ }^{1} \sigma_{\mathrm{R}}{ }^{0}+{ }^{2} \sigma_{\mathrm{R}}{ }^{0}+{ }^{3} \sigma_{\mathrm{R}}{ }^{0}\right)
$$

In this case, we use $\sigma_{\mathrm{I}}=\sigma_{\mathrm{R}}{ }^{0}=0$ for $\mathrm{Y}=\mathrm{H}$. For $\mathrm{R}=\mathrm{CHBrCN}$, the $\gamma^{13} \mathrm{C}$ shift is 138.64^{1} or 1.16 ppm downfield from $\mathrm{R}=\mathrm{Me}$ (i.e., Δ (meas) $=1.16 \mathrm{ppm}$). Therefore, for $1=\mathrm{H}, 2=\mathrm{Br}$, and $3=\mathrm{CN}$
calcd $=1.24(0+0.44+0.56)+0.91(0+-0.19+0.13)=$
$1.24-0.06=1.18 \mathrm{ppm}$
Thus, the calculated and measured values are in excellent agreement.

Two additional general applications of the new transfer approach are contemplated. First, we feel it should be possible to analyze ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$, and ${ }^{13} \mathrm{C}$ NMR shifts in cobalamins with the DSP approach applied to $\mathrm{CH}_{2} \mathrm{Y}$ compounds. Preliminary analyses of results for $\mathrm{CH}_{2} \mathrm{Y}$ cobalamins with the DSP approach appear promising, but insufficient data are currently available. Since the adenosyl moiety can be categorized as a $\mathrm{CH}_{2} \mathrm{Y}$ group, it may

[^8]be possible to obtain $\sigma_{\mathrm{I}}, \sigma_{\mathrm{R}}{ }^{+}$, and $\sigma_{\mathrm{R}}{ }^{0}$ values for the $\widehat{\mathrm{CHCHOHCHOHCH}}$ (Ade)O O moiety. Likewise, with adequate data bases, we should be able to determine values for $\sigma_{1}, \sigma_{\mathrm{R}}{ }^{+}$, and $\sigma_{\mathrm{R}}{ }^{0}$ for additional Y substituents by using the ρ_{R} and ρ_{I} parameters determined in this study.

Bonding Implications of the New DSP Approach. Our modified DSP approach gives good to excellent fits with constants derived from organic aromatic systems with these substituents. Orbitals on the substituents can conjugate with π orbitals on the aromatic ring. Likewise, orbitals on the substituent can conjugate with orbitals on the metal.

Perhaps the best qualitative view of such interactions can be gained by extending the concepts developed by Traylor's laboratory in studies on the effects of metal substituents on the properties of R groups. ${ }^{32}$ The effect of an organometallic substituents, such as $\mathrm{CH}_{2} \mathrm{SnMe}_{3}$, on the properties of organic moieties is about the same as an amino group. Therefore, the $\mathrm{M}-\mathrm{C}$ bond is about as polarizable as an amino group lone pair.

Extending these concepts to the cobaloximes, the possibility exists for $\mathrm{n} \rightarrow \sigma$ conjugation between Y lone pairs and the $\mathrm{Co}-\mathrm{C}$ bond. Such conjugation could explain, for example, the large effect of the OMe substituent on rates, ${ }^{13} \mathrm{C}$ spectra, and $\mathrm{Co}-\mathrm{N}$ bond length. Apparently, σ_{R} constants are reasonable quantitative empirical measures of this conjugation, and σ_{I} constants are a good measure of the inductive effect of the substituent in these organocobalt compounds. Thus, since σ_{I} and σ^{*} are directly related, the previous limited success of the σ^{*} only analysis undoubtedly arose from a neglect of the $\mathrm{n} \rightarrow \sigma$ conjugation and, possibly, from steric effects. Although $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}$ compounds were not studied in published reports utilizing the σ^{*} approach, ${ }^{16,17}$ the large negative value for $\sigma_{\mathrm{R}}{ }^{+}$for OMe leads to the large discrepancy we found using the σ^{*} analysis.
Evidence has been presented that ligand exchange is a dissociative process with a considerable degree of $\mathrm{Co}-\mathrm{L}$ bond breaking at the transition state. ${ }^{37}$ Therefore, the Co center becomes electron deficient. The DSP approach gives negative values for $\rho_{\mathrm{R}}{ }^{+}$(Figure 4). Thus, "resonance" donating substituents such as OMe will stabilize the transition state relative to the ground state.

[^9]There are parallels to organic chemistry in which $\sigma_{\mathrm{R}}{ }^{+}$constants are useful in correlating reactions leading to electron-deficient centers. The correlation of the ${ }^{13} \mathrm{C}$ results with $\sigma_{\mathrm{R}}{ }^{0}$ also has parallels in organic chemistry since ${ }^{13} \mathrm{C}$ shifts reflect ground-state properties and no changes in charge are involved.

Summary. We believe we have clearly established the utility of treating R groups as $\mathrm{CH}_{2} \mathrm{Y}$ substituents. This approach explains long-standing anomalies in the effects of R groups on the properties of organocobalt species and calls into question quantitative conclusions based solely on σ^{*} values for the R groups. The concepts developed by physical organic chemists to explain the significance of $\sigma_{\mathrm{I}}, \sigma_{\mathrm{R}}{ }^{+}$, and $\sigma_{\mathrm{R}}{ }^{0}$ are relevant to these organocobalt systems. Qualitatively, the effect of the Y substituent may be the consequence of $\mathrm{n} \rightarrow \sigma$ conjugation involving the polarizable $\mathrm{Co}-\mathrm{C}$ bond. The effects of R groups on several types of organocobalt compounds are closely related, ${ }^{2,3}$ and the findings should apply to B_{12} systems. ${ }^{20}$ Analysis of the effects of ligands on the properties of metal complexes reveals that cobaloximes are representative, ${ }^{11,12,38}$ and thus it is conceivable that organic substituent constants could be transferred to other organometallic systems by our approach. Finally, since the effects of substituents appear to be additive, ${ }^{35}$ it is likely that this approach can be generalized to R derivatives other than $\mathrm{CH}_{2} \mathrm{Y}$ compounds. Although such prospects of a general scale to correlate the properties of very diverse compounds are exciting, the definition of the utility and limitations of the method require further work.

Acknowledgment. This research was supported by NIH Grant GM29225 to L.G.M. and by a grant from MPI (Rome) to L.R. The purchase of the $360-\mathrm{MHz}$ NMR instrument was supported, in part, by an NSF departmental grant to Emory. We are grateful to these organizations. The research was also supported, in part, by an Emory Research Grant.

Supplementary Material Available: Tables of elemental analyses, ${ }^{13} \mathrm{C}$ shifts, rate constants, complete DSP approach results, anisotropic thermal parameters, hydrogen atom coordinates, and complete bond lengths and bond angles (21 pages); listing of final calculated and observed structure factors (40 pages). Ordering information is given on any current masthead page.
(38) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 335.

[^0]: ${ }^{\dagger}$ Emory University.
 £ Universita di Trieste.

[^1]: (1) Bresciani-Pahor, N.; Forcolin, M.; Marzilli, L. G.; Randaccio, L.; Summers, M. F.; Toscano, P. J. Coord. Chem. Rev. 1985, 63, 1.
 (2) Marzilli, L. G.; Summers, M. F.; Bresciani-Pahor, N.; Zangrando, E.; Charland, J.-P.; Randaccio, L. J. Am. Chem. Soc. 1985, 107, 6880.
 (3) Parker, W. O., Jr.; Bresciani-Pahor, N.; Zangrando, E.; Randaccio, L.; Marzilli, L. G. Inorg. Chem. 1985, 24, 3908.
 (4) Brown, K. L.; Hakimi, J. M.; Jacobsen, D. W. J. Am. Chem. Soc. 1984, 106, 7894. Brown, K. L.; Hakimi, J. M.; Nuss, D. M.; Montejano, Y. D.; Jacobsen, D. W. Inorg. Chem. 1984, 23, 1463.
 (5) Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1984, 106, 5197.
 (6) Halpern, J. Science (Washington, D.C.) 1985, 227, 869 and personal communication.
 (7) Finke, R. G.; Schiraldi, D. A.; Mayer, B. J. Coord. Chem. Rev. 1984, 54, 1.
 (8) Pratt, J. M. J. Mol. Catal. 1984, 23, 187.
 (9) Dolphin, D., Ed. B_{12}; Wiley: New York, 1982.
 (10) Halpern, J. Inorg. Chim. Acta 1981, 50, 11. Halpern, J. Inorg. Chim. Acta 1982, 62, 31. Halpern, J. Science (Washington, D.C.) 1982, 217, 401 Halpern, J. Acc. Chem. Res. 1982, 15, 238.
 (11) Marzilli, L. G.; Politzer, P.; Trogler, W. C.; Stewart, R. C. Inorg. Chem. 1975, 14, 2389.
 (12) Gofman, M. M.; Nefedov, V. 1. Inorg. Chim. Acta 1978, 28, 1

[^2]: (13) Taft, R. W., Jr. 1n Steric Effects in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York, 1956; p 619.
 (14) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, 1987.
 (15) Arnold, D. P.; Bennett, M. A. Inorg. Chem. 1984, 23, 2117
 (16) Brown, K. L.; Lyles, D.; Pencovici, M.; Kallen, R. G. J. Am. Chem. Soc. 1975, 97, 7338.
 (17) Brown, K. L.; Awtrey, A. W. Inorg. Chem. 1978, l7, 111.
 (18) Brown, K. L.; Lu, L.-Y. Inorg. Chem. 1981, 20, 4178.
 (19) Guschl, R. J.; Stewart, R. S.; Brown, T. L. Inorg. Chem. 1974, 13, 417.
 (20) Rossi, M.; Glusker, J. P.; Randaccio, L.; Summers, M. F.; Toscano, P. J.; Marzilli, L. G. J. Am. Chem. Soc. 1985, 107, 1729.

[^3]: (24) International Tables for X-Ray Crystallography; Kynoch: Birmingham, England, 1974; Vol. 1V, Table 2.2B.
 (25) Frenz, B. A.; Okaya, Y. Enraf-Nonius Structure Determination Package; Enraf-Nonius: Delft, Holland, 1980.

[^4]: (26) Molock, F. F.; Boydkin, D. W. J. Heterocycl. Chem. 1982, l9, 695.

[^5]: (27) Unpublished results.
 (28) Palenik, G. J.; Sullivan, D. A.; Naik, D. V. J. Am. Chem. Soc. 1976, 98, 1177.

[^6]: (29) Parker, W. O., Jr.; Zangrando, E.; Bresciani-Pahor, N.; Randaccio, L.; Marzilli, L. G. Inorg. Chem. 1986, 25, 3489.
 (30) Lopez, C.; Alvarez, S.; Solans, X.; Font-Altaba, M. Inorg. Chem. 1986, 25, 2962.
 (31) Brown, K. L.; Hakimi, J. M. J. Am. Chem. Soc. 1986, l08, 496.

[^7]: (34) Ehrenson, S.; Brownlee, R. T. C.; Taft, R. W., Jr. Prog. Phys. Org. Chem. 1973, 10, 1.

[^8]: (35) Zangrando, E.; Bresciani-Pahor, N.; Randaccio, L.; Charland, J.-P.; Marzilli, L. G. Organometallics 1986, 5, 1938.
 (36) The current data base in Table l1I allows for an interesting comparison between the DSP approach, based on organic substituent constants, and the single-parameter approach, based on EP parameters derived from ${ }^{13} \mathrm{C}$ shifts in cobaloximes. ${ }^{35}$ Correlations of the data with EP lead to linear relationships with the following lcc: $\log k_{1}(4-\mathrm{CNpy}), 0.9794 ; \log k_{1}(4-$ $\left.\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right), \quad 0.9787 ;{ }^{13} \mathrm{C}-\mathrm{N}\left(4-\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right), 0.8664 ;{ }^{13} \mathrm{C}-\mathrm{O}(4-$ $\left.\mathrm{CH}_{3} \mathrm{OPhNH}_{2}\right), 0.9514 ;{ }^{13} \mathrm{C}=\mathrm{C}\left(4-\mathrm{CH}_{3} \mathrm{O} \mathrm{PhNH}_{2}\right), 0.9536$; and ${ }^{13} \mathrm{C}(\mathrm{py})$, 0.9977. Thus, the EP approach works best when the $\rho_{\mathrm{R}} / \rho_{1}$ value (Table V) is close to 0.738 , the value found for the ${ }^{13} \mathrm{C}(\mathrm{py})$ shifts on which the EP values are based. As the resonance contribution becomes more important, the correlation becomes increasingly poor. However, it is possible that the additive properties found for the ${ }^{13} \mathrm{C}$ in the pyridine series will also apply to the 4- $\mathrm{CH}_{3} \mathrm{OPhNH}_{2}$ series, but separate ρ_{1} and ρ_{R} values will be needed for each type of carbon.

[^9]: (37) Trogler, W. C.; Stewart, R. C.; Marzilli, L. G. J. Am. Chem. Soc. 1974, 96, 3697. Stewart, R. C.; Marzilli, L. G. J. Am. Chem. Soc. 1978, 100, 817.

